GE's Ecomagination strategy involves energy storage; $30m investment in A123 Systems

October 23 2008 / by Garry Golden
Category: Energy   Year: 2010   Rating: 2

General Electric is taking another step into the growth sector of energy storage by investing $30 million in A123’s $102 million Series E financing, making it the battery manufacturer’s largest single cash investor – at 9 percent ownership. The investments were made by GE Commercial Finance – Equity and GE Energy Financial Services, bringing GE’s combined total investment in A123Systems to $55 million.

What does GE see in storage? A way to manage production?
GE is already one of the world’s leading power generation equipment providers, so why invest in batteries and storage?

GE’s executives must see clear growth ahead around demand for storage to support growth in wind and solar power generation, utility companies trying to build more robust ‘smart grids’, and to help the automobile industry as it moves the world’s fleet away from liquid fuels and the combustion engine.

If GE is able to expand alternatives for energy storage through better batteries, fuel cells and capacitors- it could expand growth around its own wind turbines, solar panels and hydrogen production appliances.

In a decade GE might be a leader in emerging classes of distributed ‘energy appliances’ involved in on-site storage and power generation, not too mention a potential brand name for powering electric vehicles expected to hit showroom floors after 2011.

A123 Mixed Week of News
A123 has had a lot of recent press coverage around its nanostructured rechargeable lithium-ion batteries that provide power density, low weight, and low cost without sacrificing safety issues caused by overheating. But the startup must figure out a way to compete against strong incumbents in the energy storage sector.

Earlier we covered General Motor’s decision to skip A123’s batteries for a Detroit based unit of LG Chem to provide batteries for the Volt.

GE’s investment could help to balance out this weeks’ bad news.

Related posts:
GM Volt will not use A123 batteries
Solid hydrogen storage
US firm buy Korean battery maker

Materials and Image sourced from GE Press Release

Thin film battery startup raises money

October 24 2008 / by Garry Golden
Category: Energy   Year: 2012   Rating: 2

Earth2Tech is reporting that thin-film lithium-ion battery start-up Planar Energy Devices, has announced $12 million financing deal as it prepares to release its PowerBlade™ product in 2009.

The demand for safe, energy dense storage systems will only continue to grow as more consumer gadgets, wireless sensors, and micro devices hit the marketplace.

Planar hopes to capture its share of this growing market (Est. $55 billion) with its thin film solid state battery design that uses a unique cell separator to prevent overheating and potential fires common to lithium ion.

This is Planar’s second finance round. It was spun out of the U.S. DOE National Renewable Energy Laboratory (NREL) with an initial $4 million in 2007 with venture-financing from Battelle Ventures and Innovation Valley Partners (IVP).

Kids Get Hydrogen Powered Remote Controlled Car, Adults Still Waiting

November 04 2008 / by John Heylin / In association with Future Blogger.net
Category: Gadgets   Year: 2008   Rating: 2

Horizon Fuel Cell Technologies has a spiffy new remote control car that runs on hydrogen. It uses solar power to convert water into hydrogen which the user then empties into the car. Platinum plates then compress the hydrogen to get the needed electricity from it. While the car can only run for about four minutes, it’s a step toward making our toys and gadgets that much more energy efficient.

Horizon itself is a very interesting company. They started out with the intention of being specialists in everything hydrogen and pretty much did just that. they offer a wide variety of products from small hydrogen fuel cells to portable ones for camping trips. The one that caught my attention was their development of a hydro-bike (video below) with puts a small fuel cell on a bicycle in order to power it. I want.

via Nerd Grind

Is Detroit asleep at the wheel? Canadian battery company expands presence in China

November 05 2008 / by Garry Golden
Category: Transportation   Year: 2013   Rating: 2

Yesterday, Canada’s Electrovaya announced the signing of three Memorandum of Understanding MOU’s with Chinese manufacturers of electric cars, trucks and manufacturing equipment including Chana International Corp. which has joint ventures with both Ford and Mazda. Electrovaya’s announcement comes less than a month after signing a strategic partnership with India’s TATA Motors to sell cars in Europe in 2009.

Where is Detroit?
Detroit’s Big Three (GM, Ford & Chrysler) are distracted by short-term challenges. Their ‘legacy costs’ associated with building cars around the combustion engine could keep it from leapfrogging into a new era of vehicle manufacturing and design based on electric motors.

Could we be witnessing a classic ‘low end disruption’ strategy evolving in the global auto industry as Asia grabs reigns on future of electric vehicles powered by batteries, fuel cells and capacitors?

How?

Global automakers figure out that the revolution is how you build cars, not how you fuel them that matters. (Oil is not the problem, the problem is the combustion engine.) The key to building low cost high performance electric cars revolves around energy storage systems. If it is cheaper to build energy storage systems in China than Ohio and Michigan, than the Rust Belt might struggle to grow cleantech jobs.

Electric car industry is going global, quickly!
Now that the US election is over, the tone of conversations could change significantly to reflect more pragmatic policies. One policy vision that could be destroyed is the notion of ‘energy independence’ via electric cars. This rhetoric could fade quickly as it becomes more clear that both the auto and energy industries are very global, and will likely continue to become more globally integrated in the post-combustion era.

We have featured dozens of stories of the globalization of the electric vehicle industry including Warren Buffets equity stake in Chinese energy storage company BYD, Korea’s push into energy storage manufacturing with General Motors, and Tata’s intention to sell electric cars inside Europe.

Energy Storage key to Accelerating Change
The key to electrifying the world’s transportation fleet is to advance and integrate energy storage systems around batteries, hydrogen fuel cells and capacitors.

Detroit’s future might depend on how the value chain unfolds around global energy storage systems. If Asia appears to be the lowest cost manufacturing hub for energy storage systems it could reinvent the world’s auto industry.

Continue Reading

[Video] Interview on Electric Cars with Shai Agassi - 'Time for Big Bets' and Disruptive Business Models

November 11 2008 / by Garry Golden
Category: Energy   Year: 2016   Rating: 2

Last week at the OReilly Web 2.0 Summit Tim O’Reilly interviewed Shai Agassi, CEO of electric car network startup Better Place.

This [30 minute] interview reflects a very different way of thinking about the future based on the potent combination of new technology platforms and disruptive business models.

The simplest translation of Shai Agassi’s disruptive vision ?
We should buy the car, but not the battery or fuel cell. Remove the cost and risk of owning energy storage systems out of the consumer equation. Instead consumers would subscribe to an energy infrastructure provider and ‘pay per mile’ (e.g. mobile phone minutes plan). They could refill at a local electric recharge station, or pull up to a station to ‘swap out’ an old battery (or depleted solid block of hydrogen) for a new container. Agassi believes this new business model could lower the barriers that prevent us from leaping beyond the era of the combustion engine.

How do we do it? Big bets, major infrastructure investments and new business models.

Why is this important to the future of energy?

Continue Reading

Hydrogen Fuel Cells — What's Good For Your Car is Good For Your Phone

November 12 2008 / by John Heylin / In association with Future Blogger.net
Category: Energy   Year: 2012   Rating: 2

Although there has been much discussion about developing a hydrogen fuel cell for vehicles, a crazy company called MyFC has decided what’s good for the car is great for the cellphone. They went ahead and developed a flexible hydrogen fuel cell only 3mm thick which can fit snugly under your battery cover (pictured above). This means you could potentially power your devices with good clean energy (and who knows how long the charge could last, maybe days).

When can you expect to see this?

Although CrunchGear reports that the fuel cell is “amazingly close to production,” actual support and implementation of such a device could be years away. Here’s why:

Continue Reading

Korean researchers use 3D silicon material to improve lithium ion batteries

November 21 2008 / by Garry Golden
Category: Energy   Year: 2018   Rating: 2

It’s very hard to build a better battery. The chemistry is just bad. Pulling together the right combination of elements is either expensive, toxic or the ideal performance is short lived. The long view favorite for portable power systems remains micro fuel cells, but until that day arrives it is likely to be lithium ion batteries that dominate the market share for micropower.

Rechargeable lithium ion batteries power everything from cell phones and laptops to digital cameras. But they have failed to keep up with the pace of development in high performance, power hungry consumer electronics. iPhone owners struggle to get through a full day of use without running out of juice. And laptop carrying road warriors scramble inside airports, and geek freelancers position themselves in cafes just to find a plug. But hope for lithium ion batteries may be on the horizon!

What happened?
A Korean research team led by Dr. Jaephil Cho at Hanyang University has demonstrated a novel 3D silicon material used as a lithium-ion battery anode that greatly improves performance.

Li-ion batteries charge by transporting lithium ions from a positive cathode to a negative anode usually made of carbon (graphite). The energy charge is stored on the anode side of the unit, until needed by the device. Researchers try to expand performance by increasing the amount of energy that can be stored. Switching from carbon to silicon based materials is one path towards better performance.

Materials scientists have been exploring silicon as an anode material but, until now, have been unable to overcome its main barrier: maintaining its structural integrating after repeated charging and discharging.

A solution? Cho’s team of researchers have created a 3D porous silicon material that appears to hold its own and avoids collapsing on itself.

Why is this important to the future of energy?

Continue Reading

Toshiba opens lithium ion battery plant, Asia holding advantage in energy storage systems

December 26 2008 / by Garry Golden
Category: Energy   Year: 2010   Rating: 2

Toshiba li ion

While US and European leaders debate investments in clean tech energy platforms, Asia continues to advance its first mover advantage in energy storage. 

Toshiba Corporation has announced plans to construct a new production facility for its safe, long-life rapid charge SCiB battery to meet expected demand for industrial and automotive applications from 2010 on. The company also announced plans to expand production of high efficiency motors at a Vietnam based factory.

Energy storage is going to be a major growth area within the 'new energy economy'.  Batteries are expected to be the dominate platform in the years ahead, but fuel cells and capacitors could soon emerge from the bottom of the 'Hype Cycle' with actual commercial products.

Toshiba estimates that the market for lithium-ion batteries for industrial and automotive applications to reach sales of 1.7 trillion yen (approximately US$19 billion) worldwide in fiscal year 2015.

Continue Reading

Breakthrough in high surface area MOFs that absorb hydrogen and carbon, Tell Barack Obama

January 08 2009 / by Garry Golden
Category: Energy   Year: 2018   Rating: 2

MOFsOmarYaghi

What if Barack Obama said in his first State of the Union address: 'America must invest in high surface area materials...' ?

Most people would be puzzled.  Some minds would probably close down after hearing something slightly intimidating and 'scientific'. 

Why surface area?  Why not say 'invest in better batteries, cleaning up fossil fuels, solar and hydrogen'? 

Energy is about Interactions
Surface area enables better interactions between light, carbon, hydrogen, oxygen, metals, and bio enzymes. (At least, that's the short answer.)

The real road to a 'New Energy Economy' is paved at the nanoscale of material science. 

What types of applications can we expect?

1) High surface area materials - Trap Molecules & Light
Imagine being able to 'trap' harmful molecules that are byproducts of coal or oil.
Or solar cells that hold photons longer to produce more energy!

2) Solid state storage of energy - High Density Packets
Imagine billions of people buying high density 'packets' of energy at retail stores. We 'refill' instead of 'plugging into' wall sockets.  Or electric vehicles that can be refilled by swapping out 'bricks' of energy in the form of solid Hydrogen.

The Evolution of MOFs
Chemical Engineering & News is reporting on progress in a very promising class of high surface area materials that can absorb hydrogen and carbon: Metal Organic Frameworks or MOFs.

MOFs are highly ordered interconnected 'lego' like structures that have open pores that can selectively absorb molecules. It is a 'sponge' with the highest surface area of all known materials- estimated at several football fields per gram.

The problem? Clogged pores.

Now, a team led by UCLA's Professor Omar M. Yaghi, who synthesized MOFs in mid 1990s at Michigan, has developed a technique using supercritical fluids that essentially clean out the material leading to a vast network of open holes.

What to do next?  Somebody tell Barack Obama to make Molecular Surface Area a National Priority

Related posts on The Energy Roadmap.com

Continue Reading

Does the road to Electric Vehicles pass through China? EV Startup outsources production

January 13 2009 / by Garry Golden
Category: Transportation   Year: 2014   Rating: 2

China

EV startup Miles Automotive has announced plans to outsource manufacturing of its California-bound electric vehicles to a China-based assembly factory.

Auto analysts continue to speculate about plans by Detroit-based companies to partner with Asian manufacturers.  And yesterday the Wall Street Journal reported on BYD's plans to produce EVs for global markets based on a lower barrier to manufacturing.

More than ever before, the road to electric vehicles powered by batteries, fuel cells and capacitors seems destined to pass through Asia.

And it is time to challenge common assumptions about EVs?

Will EVs be a Domestic or Global Industry?
It is commonly assumed that electric vehicles would bring non-OPEC countries more 'independence'.  Instead it seems clear that the age of EVs will pull them further into the global economy of 'interdependence'.  Electric vehicles propulsion systems and storage systems (batteries, fuel cells and capacitors) are likely to emerge from a global value chain that spans from Asia to Europe to Americas. 

Will Early Adopter Markets Emerge from within Europe/California or Asia?

Continue Reading

FuelCell Energy receives $30 million for a Post Combustion Era Solution for Cleaner Coal

January 13 2009 / by Garry Golden
Category: Environment   Year: 2018   Rating: 2

Stationary Fuel Cell

FueCellMarkets is reporting on a $30 million Phase II contract to expand testing of Solid Oxide Fuel Cell (SOFC) coal syngas power generation.  This type of stationary fuel cell converts coal derived gas via electrochemical processes to produce electricity and heat.  The result of this scalable non-combustion method is higher efficiency and signficantly lower carbon emissions.

Advancing Global Carbon Solutions
Coal
is not going away anytime soon.  In fact, its global market share is growing as the primary source of energy for electricity generation.

Cheaper solar and wind does not, by default, mean less coal in a world economy expected to double energy production in the decades ahead. Coal is already embedded into global power grids, and it is not going to disappear overnight.

If we expect to address carbon emissions, we have to do more than develop alternatives.  We need scalable carbon solutions that move us beyond the age of combustion conversion and harmful release of emissions.

While coal will never be 'clean', there are cleaner ways of converting it that result in significantly less carbon emissions.  We have written extensively about algae, but fuel cells offer another path forward.

Fuel Cells, Coal Gas, & a Post Combustion Era of Energy Conversion

Continue Reading

Major step forward in non-platinum, carbon nanotube based catalyst for fuel cells

February 10 2009 / by Garry Golden
Category: Energy   Year: General   Rating: 2

Carbon Nanotube CC Gutchis

Becoming 'energy efficient' goes far beyond changing light bulbs.  Our greatest gains will come from moving beyond today's 'combustion' energy systems that burn fuels in large power plants and under our hoods.

Central to this 'post-combustion era' strategy is the fuel cell- which converts chemical energy of hydrogen or hydrogen rich fuels (e.g. natural gas, methanol) into electrical energy.  Fuel cells are modular, have no moving parts, offer higher efficiencies, lower maintenance and are ideal for distributed applications.

One of the major roadblocks has been the high costs of platinum catalysts that are peppered on fuel cell membranes (MEAs).  To scale up in the decades ahead, fuel cell researchers need to find non-precious metal catalysts.

Can Carbon outperform Platinum?
Now a research team from the University of Dayton has found a way to create a carbon nanotube based catalyst that might outperform platinum and dramatically drop the costs of fuel cells.

Shape helps speed up reactions
The research team, led by Dr Liming Dai, synthesized carbon nanotubes using an iron base and doped nitrogen particles to change the shape (and properties) of the nanotube cathode, resulting in a faster reaction / higher efficiency.

New Scientist reports Dai's claim that "They are even better than platinum, long regarded as the best catalyst," as they avoid problems with carbon 'poisoning' that leads to lower performance. 

We have written extensively on the disruptive role of nanoscale science and engineering in all energy applications (old and new), and the importance of 'shape' in determining molecular system performance in catalysis.  We cannot simply extrapolate our assumptions of what is possible or impossible with carbon or hydrogen based on a microscale era of scientific knowledge.  

Giving Carbon a New Image
(Nanotubes, Nanoparticles & Graphene Sheets)

Continue Reading


   1   2   3   4   5   6